
The Condition-Dependent Transcriptional Network in Escherichia coli
Thanks to the availability of high-throughput omics data, bioinformatics approaches are able to hypothesize thus-far undocumented genetic interactions. However, due to the amount of noise in these data, inferences based on a single data source are often unreliable. A popular approach to overcome this problem is to integrate different data sources. In this study, we describe DISTILLER, a novel framework for data integration that simultaneously analyzes microarray and motif information to find modules that consist of genes that are co-expressed in a subset of conditions, and their corresponding regulators. By applying our method on publicly available data, we evaluated the condition-specific transcriptional network of Escherichia coli. DISTILLER confirmed 62% of 736 interactions described in RegulonDB, and 278 novel interactions were predicted.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics
Keywords: DISTILLER; frequent itemset mining; transcriptional modules
Document Type: Research Article
Affiliations: 1: Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium 2: Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven, Leuven, Belgium 3:
Publication date: March 1, 2009