Skip to main content
padlock icon - secure page this page is secure

Free Content Alanyl-phosphatidylglycerol synthase: mechanism of substrate recognition during tRNA-dependent lipid modification in Pseudomonas aeruginosa

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Bacterial lipid homeostasis plays an important role for the adaptation to changing environments and under conditions of antimicrobial treatment. The tRNA-dependent aminoacylation of the phospholipid phosphatidylglycerol catalysed by aminoacyl-phosphatidylglycerol synthases was shown to render various organisms less susceptible to antibacterial agents. Therefore, this type of enzyme might provide a new target to potentiate the efficacy of existing antimicrobials. This study makes use of the Pseudomonas aeruginosa alanyl-phosphatidylglycerol synthase to identify the minimal core domain of this transmembrane protein, which is capable of alanyl-phosphatidylglycerol biosynthesis. Using this catalytic fragment we established a reliable activity assay that was used to study the enzymatic mechanism by analysing an overall of 33 mutant proteins in vitro. Substrate recognition was analysed by using aminoacylated microhelices as analogues of the natural tRNA substrate. The enzyme even tolerated mutated versions of this minimal substrate, which indicates that neither the intact tRNA, nor the individual sequence of the acceptor stem is a determinant for substrate recognition. Furthermore, the analysis of derivatives of phosphatidylglycerol indicated that the polar head group of the phospholipid is specifically recognized by the enzyme, whereas modification of an individual fatty acid or even the deletion of a single fatty acid did not abolish A-PG synthesis.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Institute of Microbiology, Technische Universität Braunschweig, 38106 Braunschweig, Germany. 2: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA. 3: Helmholtz Centre for Infection Research, Cellular Proteome Research, 38124 Braunschweig, Germany. 4: Helmholtz Centre for Infection Research, Microbial Pathogenesis, 38124 Braunschweig, Germany.

Publication date: 01 May 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more