Skip to main content
padlock icon - secure page this page is secure

Free Content The pathogen Neisseria meningitidis requires oxygen, but supplements growth by denitrification. Nitrite, nitric oxide and oxygen control respiratory flux at genetic and metabolic levels

Download Article:
(PDF 368 kb)

The human pathogen Neisseria meningitidis is the major causative agent of bacterial meningitis. The organism is usually treated as a strict aerobe and is cultured under fully aerobic conditions in the laboratory. We demonstrate here that although N. meningitidis fails to grow under strictly anaerobic conditions, under oxygen limitation the bacterium expresses a denitrification pathway (reduction of nitrite to nitrous oxide via nitric oxide) and that this pathway supplements growth. The expression of the gene aniA, which encodes nitrite reductase, is regulated by oxygen depletion and nitrite availability via transcriptional regulator FNR and two-component sensor-regulator NarQ/NarP respectively. Completion of the two-step denitrification pathway requires nitric oxide (NO) reduction, which proceeds after NO has accumulated during batch growth under oxygen-limited conditions. During periods of NO accumulation both nitrite and NO reduction are observed aerobically, indicating N. meningitidis can act as an aerobic denitrifier. However, under steady-state conditions in which NO is maintained at a low concentration, oxygen respiration is favoured over denitrification. NO inhibits oxidase activity in N. meningitidis with an apparent Ki NO = 380 nM measured in intact cells. The high respiratory flux to nitrite after microaerobic growth and the finding that accumulation of the denitrification intermediate NO inhibits oxygen respiration support the view that denitrification is a pathway of major importance in N. meningitidis.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Biology (Area 10), University of York, Heslington, York, YO10 5YW, UK. 2: Division of Genomic Medicine, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.

Publication date: November 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more