Skip to main content
padlock icon - secure page this page is secure

Free Content The two-component response regulator PprB modulates quorum-sensing signal production and global gene expression in Pseudomonas aeruginosa

Download Article:
 Download
(PDF)
 
Summary

The response regulator PprB and its cognate sensor PprA were recently reported as a two-component regulatory system that controls membrane permeability and antibiotic sensitivity of Pseudomonas aeruginosa. We found that a Tn5 insertion mutation in pprB caused a drastic reduction in virulence factor production and cell motility. A transcriptome analysis revealed that 175 genes were regulated by PprB. Among the 113 PprB-activated genes, 85.5% are known to be activated by N-3-oxo-dodecanoyl-homoserine lactone (OdDHL) and N-butanoyl-homoserine lactone (BHL). In particular, the expression of lasI, rhlI and rhlR, which encode key components of the las and rhl quorum-sensing (QS) systems, were significantly decreased in the pprB mutant. These data suggest that PprB might regulate QS signal production. Measurement of OdDHL and BHL in cultures of the mutant sustained this hypothesis. By using various OdDHL- or BHL-responsive QS reporter systems, including lasB–lacZ, lasI–lacZ and rsaL–lacZ, we found that the mutation in pprB resulted in a large decrease in the sensitivity of P. aeruginosa to exogenous OdDHL. However, there was no difference in sensitivity to BHL. Further analysis showed that the OdDHL influx was significantly reduced in the pprB mutant. We conclude that PprB is a novel QS modulator that positively regulates N-acylhomoserine lactone production probably by affecting the OdDHL signal influx and thereby influences global expression of the QS-dependent genes.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore. 2: Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, USA.

Publication date: June 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more