Skip to main content
padlock icon - secure page this page is secure

Free Content A mutation in the membrane subunit of an ABC transporter LolCDE complex causing outer membrane localization of lipoproteins against their inner membrane-specific signals

Download Article:

Lipoproteins in Gram-negative bacteria are anchored to the inner or outer membrane via fatty acids attached to the N-terminal cysteine. The residue at position 2 determines the membrane specificity. An ATP binding cassette transporter LolCDE complex releases lipoproteins with residues other than aspartate at position 2 from the inner membrane, whereas those with aspartate at position 2 are rejected by LolCDE and therefore remain in the inner membrane. For further understanding of this rejection mechanism, a novel strategy was developed to select mutants in which lipoproteins with aspartate at position 2 are released. The isolated mutants carried an alanine to proline mutation at position 40 of LolC, a membrane subunit of the LolCDE complex. A significant portion of an inner membrane lipoprotein, L10P(DQ), was localized to the outer membrane when the LolC mutant was expressed. Periplasmic chaperone LolA formed a complex with the released L10P(DQ), which was subsequently incorporated into the outer membrane in a LolB-dependent manner, indicating that neither LolA nor LolB rejects lipoproteins with aspartate at position 2. The amount of the LolC mutant co-purified with LolD and LolE after membrane solubilization was reduced significantly. Taken together, these results indicate that the mutation causes destabilization of the LolCDE complex and concomitantly prevents the accurate recognition of lipoprotein-sorting signals.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

Publication date: July 1, 2003

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more