Skip to main content
padlock icon - secure page this page is secure

Gene‐specific translational control of the yeast

Buy Article:

$59.00 + tax (Refund Policy)


Phosphorylation of the α subunit of eukaryotic initiation factor 2 (elF‐2α) is one of the best‐characterized mechanisms for down‐regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene‐specific case of translational control by phosphorylation of elF‐2α, Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORFI fail to reinitiate at uORFs 2‐4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2‐4 in starved cells results from a reduction in the GTP‐bound form of elF‐2 that delivers charged initiator tRNAi Met to the ribosome. When the levels of elF‐2·GTP·Met‐tRNAi Met ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of elF‐2 by the protein kinase GCN2 decreases the concentration of elF‐2·GTP·Met‐tRNAi Met complexes by inhibiting the guanine nucleotide exchange factor for elF‐2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of elF‐2.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Section on Molecular Genetics of Lower Eukaryotes, Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.

Publication date: October 1, 1993

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more