Skip to main content
padlock icon - secure page this page is secure

Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants

Buy Article:

$43.00 + tax (Refund Policy)


Many insects are ubiquitously associated with multiple endosymbionts, whose infection patterns often exhibit spatial and temporal variations. How such endosymbiont variations are relevant to local adaptation of the host organisms is of ecological interest. Here, we report a comprehensive survey of endosymbionts in natural populations of the chestnut weevil Curculio sikkimensis, whose larvae are notorious pests of cultivated chestnuts and also infest acorns of various wild oaks. From 968 insects representing 55 localities across the Japanese Archipelago and originating from 10 host plant species, we identified six distinct endosymbiont lineages, namely Curculioniphilus, Sodalis, Serratia, Wolbachia, Rickettsia and Spiroplasma, at different infection frequencies (96.7%, 12.8%, 82.3%, 82.5%, 28.2% and 6.8%, respectively) and with different geographical distribution patterns. Multiple endosymbiont infections were very common; 3.18 ± 0.61 (ranging from 1.74 to 5.50) endosymbionts per insect on average in each of the local populations. Five pairs of endosymbionts (CurculioniphilusSerratia, CurculioniphilusWolbachia, SodalisRickettsia, WolbachiaRickettsia and RickettsiaSpiroplasma) co-infected the same host individuals more frequently than expected, while infections with Serratia and Wolbachia were negatively correlated to each other. Infection frequencies of the endosymbionts were significantly correlated with climatic and ecological factors: for example, higher Sodalis, Wolbachia and Rickettsia infections at localities of higher temperature; lower Wolbachia and Rickettsia infections at localities of greater snowfall; and higher Curculioniphilus, Sodalis, Serratia, Wolbachia and Rickettsia infections on acorns than on chestnuts. These patterns are discussed in relation to potential host–endosymbiont co-evolution via local adaptation across geographical populations.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: bacterial community; co-evolution; multiple infection; mutualism; phytophagous insect; symbiosis

Document Type: Research Article

Publication date: 01 February 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more