Skip to main content
padlock icon - secure page this page is secure

Hybrid origin and differentiation of two tetraploid Achillea species in East Asia: molecular, morphological and ecogeographical evidence

Buy Article:

$69.00 + tax (Refund Policy)


Achillea (Asteraceae-Anthemideae) offers classical models for speciation by hybridization and polyploidy. Here, we test the suspected allotetraploid origin of two species, Achillea alpina and Achillea wilsoniana between phylogenetically distinct lineages in East Asia. A total of 421 AFLP bands from 169 individuals and 19 populations of five 2x- and two 4x-species were obtained. The data set was analysed with a newly developed model that accounts for polyploidy and assumes lack of recombination between the parental chromosome sets (i.e. disomic inheritance). A. alpina and A. wilsoniana then appear to be allotetraploids between Achillea acuminata-2x (sect. Ptarmica) and Achillea asiatica-2x (sect. Achillea). The two 4x-species share 44% and 48% of their AFLP bands with A. acuminata-2x, and 39% and 38% with A. asiatica-2x, respectively. Eight plastid haplotypes (A–H) were detected by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) analyses. A. alpina-4x and A. wilsoniana-4x share haplotype F only with A. asiatica-2x. This is consistent with the hybrid origin(s) involving the latter as the maternal ancestor. This result corroborates our previous DNA sequence data, where A. alpina-4x and A. wilsoniana-4x are also placed close to A. asiatica-2x. Morphology, ecology, and amplified fragment length polymorphism (AFLP) profiles of the two 2x-species are distinct, whereas the two 4x-species, grouped as A. alpina aggregate, form a nearly continuous link between them. Considering all evidence, this 4x-aggregate is regarded as the product of a hybridization between genetically distant 2x-ancestors limited to China and adjacent areas: one A. acuminata-like, and the other A. asiatica-like. The allopolyploid A. alpina agg. exhibits considerable morphological variation and ecological flexibility, and has expanded throughout eastern Asia and to northern North America, far beyond the ranges of their presumed 2x-ancestors.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: AFLP; Achillea; dominant markers; hybridization; plastid PCR–RFLP; polyploidy

Document Type: Research Article

Affiliations: 1: Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210 Vienna, Austria, 2: Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, A-1030 Vienna, Austria,

Publication date: January 1, 2006

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more