Skip to main content
padlock icon - secure page this page is secure

Local administration of vasoactive intestinal peptide after nerve transection accelerates early myelination and growth of regenerating axons

Buy Article:

$52.00 + tax (Refund Policy)

Abstract 

Our goal was to determine whether local injections of vasoactive intestinal peptide (VIP) promote early stages of regeneration after nerve transection. Sciatic nerves were transected bilaterally in 2 groups of 10 adult mice. In the first group, 15 μg (20 μL) of VIP were injected twice daily into the gap between transected ends of the right sciatic nerve for 7 days (4 mice) or 14 days (6 mice). The same number of mice in the second group received placebo injections (20 μL of 0.9% sterile saline) in the same site, twice daily, for the same periods. After 7 days, axon sizes, relationships with Schwann cells and degree of myelination were compared in electron micrographs of transversely sectioned distal ends of proximal stumps. Fourteen days after transection, light and electron microscopy were used to compare and measure axons and myelin sheaths in the transection gap, 2-mm distal to the ends of proximal stumps. Distal ends of VIP-treated proximal stumps contained larger axons 7 days after transection. More axons were in 1:1 relationships with Schwann cells and some of them were surrounded by thin myelin sheaths. In placebo-treated proximal stumps, axons were smaller, few were in 1:1 relationships with Schwann cells and no myelin sheaths were observed. In VIP-treated transection gaps, measurements 14 days after transection showed that larger axons were more numerous and their myelin sheaths were thicker. Our results suggest that in this nerve transection model, local administration of VIP promotes and accelerates early myelination and growth of regenerating axons.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Schwann cell; laminin; myelin; nerve regeneration; vasoactive intestinal peptide

Document Type: Research Article

Affiliations: 1: Basic Neurosciences Program 2: Laboratory of Neurochemistry,

Publication date: June 1, 2002

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more