Skip to main content
padlock icon - secure page this page is secure

Genes Differentially Expressed By Schwann Cells Of Motor Versus Sensory Nerves

Buy Article:

$47.00 + tax (Refund Policy)

Charcot-Marie-Tooth (CMT) disease includes a heterogeneous group of inherited demyelinating peripheral neuropathies related to genetic defects of myelin-forming Schwann cells (SC). In CMT, as in other common acquired demyelinating neuropathies (Guillain Barré syndrome, chronic inflammatory demyelinating polyneuropathy), motor nerves are invariably more involved than sensory nerves. Also in transgenic mouse models of peripheral neuropathy, there is a preferential demyelination of motor districts independent of the type of genetic alteration. The basis for differential susceptibility to demyelination is unknown. The aim of this study was to identify differences in gene and protein expression that may underlie the differential susceptibility to demyelination of motor and sensory myelin-forming SC. Since spinal roots are the only portion of mammalian PNS in which motor and sensory axons are segregated, we extracted RNA from adult rat dorsal (sensory) and ventral (motor) spinal roots and compared corresponding cDNAs by an RNA fingerprint approach. Four differentially displayed bands were isolated. We first characterized the most differentially expressed band, which was highly enriched in sensory roots. Sequence analysis showed that the band encoded a portion of rat sarco/endoplasmic reticulum calcium transporting ATPase type 1 coding sequence (SERCA1). RT-PCR experiments confirmed SERCA1 enrichment in dorsal sensory roots. SERCA enzymes are ubiquitous calcium regulatory systems in muscle and non-muscle cells and SERCA1 is selectively enriched in skeletal muscle. To our knowledge, no studies have investigated SERCA isoform expression in peripheral nerve. Identification of a calcium regulatory molecule in SC is interesting, as calcium is essential for the proper structure and function of the nodal and paranodal portions of SC, as well as the myelin sheath. However, calcium homeostasis in SC is relatively unexplored. Experiments to localize SERCA1 transcript and protein in different PNS districts and to clarify its functional role in peripheral nerve are underway.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Abstract

Affiliations: Division of Neurology, “San Giovanni Bosco” Hospital, Torino, Italy

Publication date: March 1, 2001

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more