Skip to main content
padlock icon - secure page this page is secure

PAINFUL NEUROPATHY DECREASES MEMBRANE CALCIUM CURRENT IN MAMMALIAN PRIMARY AFFERENT NEURONS

Buy Article:

The full text article is temporarily unavailable.

We apologise for the inconvenience. Please try again later.

Hyperexcitability of the primary afferent neuron leads to neuropathic pain following injury to peripheral axons. Changes in calcium channel function of sensory neurons following injury have not been directly examined at the channel level, even though calcium is a primary second messenger-regulating neuronal function. We compared calcium currents (I-Ca) in 101 acutely isolated dorsal root ganglion neurons from 31 rats with neuropathic pain following chronic constriction injury (CCI) of the sciatic nerve, to cells from 25 rats with normal sensory function following sham surgery. Cells projecting to the sciatic nerve were identified with a fluorescent label applied at the CCI site. Membrane function was determined using patch-clamp techniques in current clamp mode, and in voltage-clamp mode using solutions and conditions designed to isolate I-Ca. Somata of peripheral sensory neurons from hyperalgesic rats demonstrated decreased I-Ca. Peak calcium channel current density was diminished by injury from 3.06 +/− 0.30 pS/pF to 2.22 +/− 0.26 pS/pF in medium neurons, and from 3.93 +/− 0.38 pS/ pF to 2.99 +/− 0.40 pS/pF in large neurons. Under these voltage and pharmacologic conditions, medium-sized neuropathic cells lacked obvious T-type calcium currents which were present in 25% of medium-sized cells from control animals. Altered Ca2+ signalling in injured sensory neurons may contribute to hyperexcitability leading to neuropathic pain.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Abstract

Affiliations: Pain 86: 43–53, 2000. Reprinted with permission from the International Association for the Study of Pain.

Publication date: December 1, 2000

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more