Skip to main content
padlock icon - secure page this page is secure

Using Named Entities for Computer‐Automated Verbal Deception Detection

Buy Article:

$52.00 + tax (Refund Policy)

There is an increasing demand for automated verbal deception detection systems. We propose named entity recognition (NER; i.e., the automatic identification and extraction of information from text) to model three established theoretical principles: (i) truth tellers provide accounts that are richer in detail, (ii) contain more contextual references (specific persons, locations, and times), and (iii) deceivers tend to withhold potentially checkable information. We test whether NER captures these theoretical concepts and can automatically identify truthful versus deceptive hotel reviews. We extracted the proportion of named entities with two NER tools (spaCy and Stanford's NER) and compared the discriminative ability to a lexicon word count approach (LIWC) and a measure of sentence specificity (speciteller). Named entities discriminated truthful from deceptive hotel reviews above chance level, and outperformed the lexicon approach and sentence specificity. This investigation suggests that named entities may be a useful addition to existing automated verbal deception detection approaches.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: computational linguistics; criteria‐based content analysis; deception detection; forensic science; linguistic inquiry and word count; named entity recognition; reality monitoring

Document Type: Research Article

Publication date: May 1, 2018

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more