Skip to main content
padlock icon - secure page this page is secure

Simultaneous Detection of Human Mitochondrial DNA and Nuclear‐Inserted Mitochondrial‐origin Sequences (NumtS) using Forensic mtDNA Amplification Strategies and Pyrosequencing Technology

Buy Article:

$52.00 + tax (Refund Policy)

Next‐generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior® instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611‐bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer‐binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep‐sequencing methods in casework.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: forensic science; minor variant; mitochondrial DNA; next‐generation sequencing; pseudogene; pyrosequencing

Document Type: Research Article

Publication date: July 1, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more