Skip to main content
padlock icon - secure page this page is secure

The Use of Scale‐Invariance Feature Transform Approach to Recognize and Retrieve Incomplete Shoeprints

Buy Article:

$52.00 + tax (Refund Policy)

Abstract

Shoeprints left at the crime scene provide valuable information in criminal investigation due to the distinctive patterns in the sole. Those shoeprints are often incomplete and noisy. In this study, scale‐invariance feature transform is proposed and evaluated for recognition and retrieval of partial and noisy shoeprint images. The proposed method first constructs different scale spaces to detect local extrema in the underlying shoeprint images. Those local extrema are considered as useful key points in the image. Next, the features of those key points are extracted to represent their local patterns around key points. Then, the system computes the cross‐correlation between the query image and each shoeprint image in the database. Experimental results show that full‐size prints and prints from the toe area perform best among all shoeprints. Furthermore, this system also demonstrates its robustness against noise because there is a very slight difference in comparison between original shoeprints and noisy shoeprints.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 2013

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more