Skip to main content
padlock icon - secure page this page is secure

Comparing the Effects of Weathering and Microbial Degradation on Gasoline Using Principal Components Analysis*

Buy Article:

$52.00 + tax (Refund Policy)

Abstract:  Ignitable liquid residues recovered from a fire scene will often show signs of weathering as a result of exposure to the heat of the fire. In addition, when the substrate is rich in organic matter, both weathering and microbial degradation may be observed. In this study, 20 μL aliquots of fresh gasoline samples were intentionally weathered and also subjected to microbial degradation in potting soil. These samples were then analyzed using a passive adsorption–elution recovery method and gas chromatography/mass spectrometry. Peak areas from compounds of interest were normalized and autoscaled and then subjected to principal components analysis. This analysis showed that while lower boiling compounds are subject to weathering, a different set of compounds are subject to microbial degradation. Of the compounds studied, heptane, octane, toluene, and ethylbenzene were the most vulnerable to both weathering and microbial degradation. In contrast, 1,3,5‐trimethylbenzene and 2‐ethyltoluene were the most resistant to both phenomena.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Chemistry and Chemical Biology, Forensic and Investigative Sciences Program, Indiana University Purdue University Indianapolis (IUPUI), 402 North Blackford Street, LD 326, Indianapolis, IN 46202.

Publication date: January 1, 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more