Skip to main content
padlock icon - secure page this page is secure

Fast Multiplexed Polymerase Chain Reaction for Conventional and Microfluidic Short Tandem Repeat Analysis

Buy Article:

$52.00 + tax (Refund Policy)

Abstract: 

The time required for short tandem repeat (STR) amplification is determined by the temperature ramp rates of the thermal cycler, the components of the reaction mix, and the properties of the reaction vessel. Multiplex amplifications in microfluidic biochip-based and conventional tube-based thermal cyclers have been demonstrated in 17.3 and 19 min, respectively. Optimized 28-cycle amplification protocols generated alleles with signal strengths above calling thresholds, heterozygous peak height ratios of greater than 0.65, and incomplete nontemplate nucleotide addition and stutter of less than 15%. Full CODIS-compatible profiles were generated using the Profiler Plus ID, COfiler and Identifiler primer sets. PCR performance over a wide range of DNA template levels from 0.006 to 4 ng was characterized by separation and detection on a microfluidic electrophoresis system, Genebench-FX. The fast multiplex PCR approach has the potential to reduce process time and cost for STR analysis and enables development of a fully integrated microfluidic forensic DNA analysis system.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: forensic science; microfluidics; nontemplate nucleotide addition; polymerase chain reaction; short tandem repeat; stutter

Document Type: Research Article

Affiliations: Network Biosystems, 1 Gill Street, Suite B, Woburn, MA 01801.

Publication date: November 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more