Skip to main content
padlock icon - secure page this page is secure

The Impact of Model Misspecification on Parameter Estimation and Item‐Fit Assessment in Log‐Linear Diagnostic Classification Models

Buy Article:

$43.00 + tax (Refund Policy)

Using a complex simulation study we investigated parameter recovery, classification accuracy, and performance of two item‐fit statistics for correct and misspecified diagnostic classification models within a log‐linear modeling framework. The basic manipulated test design factors included the number of respondents (1,000 vs. 10,000), attributes (3 vs. 5), and items (25 vs. 50) as well as different attribute correlations (.50 vs. .80) and marginal attribute difficulties (equal vs. different). We investigated misspecifications of interaction effect parameters under correct Q‐matrix specification and two types of Q‐matrix misspecification. While the misspecification of interaction effects had little impact on classification accuracy, invalid Q‐matrix specifications led to notably decreased classification accuracy. Two proposed item‐fit indexes were more strongly sensitive to overspecification of Q‐matrix entries for items than to underspecification. Information‐based fit indexes AIC and BIC were sensitive to both over‐ and underspecification.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Goethe-University Frankfurt 2: University of Maryland 3: Ulm University

Publication date: 01 March 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more