Skip to main content
padlock icon - secure page this page is secure

Free Content Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library


Before the Evolutionary Synthesis, ‘phylogenetic inertia’ was associated with theories of orthogenesis, which claimed that organisms possessed an endogenous perfecting principle. The concept in the modern literature dates to Simpson (1944), who used ‘evolutionary inertia’ as a description of pattern in the fossil record. Wilson (1975) used ‘phylogenetic inertia’ to describe population-level or organismal properties that can affect the course of evolution in response to selection. Many current authors now view phylogenetic inertia as an alternative hypothesis to adaptation by natural selection when attempting to explain interspecific variation, covariation or lack thereof in phenotypic traits. Some phylogenetic comparative methods have been claimed to allow quantification and testing of phylogenetic inertia. Although some existing methods do allow valid tests of whether related species tend to resemble each other, which we term ‘phylogenetic signal’, this is simply pattern recognition and does not imply any underlying process. Moreover, comparative data sets generally do not include information that would allow rigorous inferences concerning causal processes underlying such patterns. The concept of phylogenetic inertia needs to be defined and studied with as much care as ‘adaptation’.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: adaptation; comparative methods; constraint; independent contrasts; natural selection; phylogenetic inertia; statistics

Document Type: Research Article

Affiliations: Department of Biology, University of California, Riverside, CA, USA

Publication date: 01 November 2002

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more