Skip to main content
padlock icon - secure page this page is secure

Null model analysis of communities on gradients

Buy Article:

$43.00 + tax (Refund Policy)

Abstract Aim 

I employed a novel null model and metric to uncover unusual species co-occurrence patterns in a herpetofaunal assemblage of 49 species collected at discrete elevations along a gradient. Location 

Mount Kupe, Cameroon. Methods 

Using a construction algorithm that started from a matrix of 0s, a sample null space of 25,000 unique null matrices was generated by simultaneously conserving (1) the number of occurrences of each species, (2) site richness and (3) species range spans derived from the observed incidence matrix. I then compared the number of times each pair of confamilial species co-occurred in the null space with the same number derived from the observed incidence matrix. Two cases dealing with embedded absences in species ranges were tested: (1) embedded absences were maintained, and (2) embedded absences were assumed to be sampling omissions and were replaced by presences. Results 

In the observed absence/presence assemblage there were 147 possible confamilial species pairs. Therefore, 5% or eight were expected by chance alone to have co-occurrence patterns that differed from chance expectations by chance alone. Of these confamilial species pairs, 38 were congeneric and so 5% or two were expected to differ from chance expectations. For case (1) 16, and for case (2) 17 confamilial species pairs’ co-occurrence patterns differed significantly from chance expectations. For case (1) nine congeneric species pairs, and for case (2) 10 congeneric pairs differed significantly from chance expectations. For case (1) four, and for case (2) five congeneric species pairs formed checkerboards (patterns of mutual exclusion). Results from case (1) were a proper subset of case (2) indicating that sampling omissions did not alter greatly the results. Main conclusions 

I have demonstrated that null models are valuable tools to analyse ecological communities provided that proper models are employed. The choice of the appropriate null space to analyse distributions is critical. The null model employed to analyse birds on islands of an archipelago can be adapted to analyse species along gradients provided an additional range constraint is added to the null model. Moreover, added precision to results can be obtained by analysing each species pair separately, particularly those in the same family or genus, as opposed to applying a community-wide metric to the faunal assemblage. My results support some of the speculations of previous authors who were unable to demonstrate their suspicions analytically.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Checkerboard; community ecology; gradient; incidence matrix; null model

Document Type: Research Article

Publication date: 01 June 2004

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more