Skip to main content
padlock icon - secure page this page is secure

Defining optimal sampling effort for large-scale monitoring of invasive alien plants: a Bayesian method for estimating abundance and distribution

Buy Article:

$52.00 + tax (Refund Policy)

Summary

1. Monitoring the abundance and spatial structure of invasive alien plant populations is important for designing and measuring the efficacy of long-term management strategies. However, methods for monitoring over large areas with minimum sampling effort, but with sufficient accuracy, are lacking. Although sophisticated sampling techniques are available for increasing sampling efficiency, they are often difficult to implement for large-scale monitoring, thus necessitating a robust yet practical method.

2. We explored this problem over a large area (c.20 000 km2), using ad hoc presence–absence records routinely collected over 4 years in Kruger National Park (KNP), South Africa. Using a Bayesian method designed to solve the pseudo-absence (or false-negative) dilemma, we estimated the abundance and spatial structure of all invasive alien plants in KNP. Five sampling schemes, with different spatially weighted sampling efforts, were assessed and the optimal sampling effort estimated.

3. Although most taxa have very few records (50% of the species have only one record), the more abundant species showed a log-normal species-abundance distribution, with the 29 most abundant taxa being represented by an estimated total of 2ยท22 million individuals, with most exhibiting positive spatial autocorrelation.

4. Estimations from all sampling schemes approached the real situation with increasing sampling effort. An equal-weighted (uniform) sampling scheme performed best for abundance estimation (optimal efforts of 68 records per km2), but showed no advantage in detecting spatial autocorrelation (247 records per km2 required). With increasing sampling effort, the accuracy of abundance estimation followed an exponential form, whereas the accuracy of distribution estimation showed diverse forms. Overall, a power law relationship between taxon density (as well as the spatial autocorrelation) and the optimal sampling effort was determined.

5. Synthesis and applications. The use of Bayesian methods to estimate optimal sampling effort indicates that for large-scale monitoring, reliable and accurate schemes are feasible. These methods can be used to determine optimal schemes in areas of different sizes and situations. In a large area like KNP, the uniform equal-weighted sampling scheme performs optimally for monitoring abundance and distribution of invasive alien plants, and is recommended as a protocol for large-scale monitoring in other protected areas as well.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Bayesian estimation; abundance estimation; biological invasions; invasive alien plant; large-scale monitoring; protected areas; pseudo-absence; spatial autocorrelation

Document Type: Research Article

Affiliations: 1: Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa 2: Scientific Services, South African National Parks, Private Bag X402, Skukuza 1350, South Africa

Publication date: June 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more