Skip to main content
padlock icon - secure page this page is secure

Hull fouling as an invasion vector: can simple models explain a complex problem?

Buy Article:

$52.00 + tax (Refund Policy)

Summary

1. The most effective way to manage nonindigenous species and their impacts is to prevent their introduction via vector regulation. While ships’ ballast water is very well studied and this vector is actively managed, hull fouling has received far less attention and regulations are only now being considered despite its importance for introductions to coastal, marine systems.

2. We conducted comprehensive in situ sampling and video recording of hulls of 40 transoceanic vessels to assess propagule and colonization pressure in Vancouver and Halifax, dominant coastal ports in Canada. Concomitant sampling was conducted of harbour fouling communities to compare hull and port communities as part of a vector risk assessment.

3. Although this vector has been operational for a long time, hull and harbour communities were highly divergent, with mean Sørensen’s similarity values of 0·03 in Halifax and 0·01 in Vancouver, suggesting invasion risk is high. Propagule pressure (up to 600 000 ind. ship−1) and colonization pressure (up to 156 species ship−1) were high and varied significantly between ports, with Vancouver receiving much higher abundances and diversity of potential invaders. The higher risk of fouling introductions in Vancouver is consistent with historical patterns of successful hull fouling invasions.

4. The extent of hull fouling was modelled using ship history predictors. Propagule pressure increased with time spent in previous ports-of-call and time since last application of antifouling paint, whereas colonization pressure increased with time since last painting and with the number of regions visited by the ship. Both propagule and colonization pressure were negatively related to the time spent at sea and the latitude of ports visited.

5.Synthesis and applications. A major challenge for applied invasion ecology is the effective management of introduction vectors. We found that hull fouling has a strong potential for introduction of many species to coastal marine habitats and that management should be considered. Simple variables related to the vessels’ hull husbandry, voyage, and sailing patterns may be used to predict and manage hull fouling intensity. The results presented here should interest policy makers and environmental managers who seek to reduce invasion risk, and ship owners seeking to optimize fuel efficiency.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: biological invasions; hull fouling; introduction vectors; management; models; nonindigenous species; ports; propagule pressure; ships

Document Type: Research Article

Affiliations: 1: Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada 2: Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada 3: Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada 4: Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia B2Y 4A2, Canada 5: Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia V9T 6N7, Canada

Publication date: April 1, 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more