Skip to main content
padlock icon - secure page this page is secure

Managing wildlife populations with uncertainty: cormorants Phalacrocorax carbo

Buy Article:

$52.00 + tax (Refund Policy)

Summary



Managing wildlife populations for conservation, control or harvesting involves uncertainty. Nevertheless, decisions need to be made based on the available evidence. The two main sources of uncertainty in population modelling are parameter estimates and structural uncertainty. Structural uncertainty in models is not included as often as parameter uncertainty.



We present an approach where parameter and structural uncertainty (strength of density dependence) is included within a model, using the over-wintering English population of cormorants Phalacrocorax carbo L. Because of the damage caused to inland fishery interests by cormorants, there was a change in UK government policy in autumn 2004, increasing the numbers of birds that can be shot under licence.



A stochastic Monte Carlo annual population model was produced to examine the effect of changes to the numbers of birds shot each year. Indices of annual population size were converted to population estimates and used to determine annual growth rates and strength of density dependence.



There is strong evidence for density dependence in the data, which suggests the population is currently slightly above carrying capacity, with a mean growth rate of 4–6% per annum. The 1300 birds shot under licence in 2004/05 represent about 4ยท5% of the English population, and if this level of culling continues, the population would be expected to decline by 9% by 2007, compared to the long-term average. The a priori preferred model, which included all uncertainty, gave predictions for 2004/05 and 2005/06 in close agreement with field data.



The model was used to produce short-term population projections, with the understanding that Adaptive Resource Management (ARM) will be adopted to iteratively update the parameters and model each year, feeding back into the numbers of available licences.



Synthesis and applications. We recommend the approach used in this study of including parameter and structural uncertainty within a single model, where possible, with the proportion of iterations that utilize a particular structure dependent on the weight of evidence for that structure. This will produce results with wider confidence intervals, but ensures that the evidence for any particular model is not over-interpreted.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: Monte Carlo model; density dependence; model structure; population; population growth; population index; population model

Document Type: Research Article

Publication date: December 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more