Skip to main content
padlock icon - secure page this page is secure

The interaction between molten gallium and the hydrocarbon medium induced by ultrasonic energy—can gallium carbide be formed?

Buy Article:

$52.00 + tax (Refund Policy)

Ultrasonic irradiation of molten gallium in organic liquids (decane, dodecane, etc.) results in dispersion of the gallium into nanometric spheres. These were examined by several analytical methods XRD, DSC, Raman and IR spectroscopy) as well as electron microscopy (SEM, TEM) and found to be composed of Ga and C. The DSC analysis indicates that the Ga has possibly reacted with carbon, while the Raman spectrum of the product demonstrates a strong additional peak that could not be identified. This work explores the possibility that the product is gallium carbide or another gallium‐carbon complex. To investigate the nature of the product, we performed detailed extended X‐ray absorption fine structure (EXAFS) and X‐ray absorption near‐edge structure (XANES) analyses. On the basis of DSC, IR, and Raman it appear to be formation of GaC, whereas the analysis by EXAFS and XANES demonstrated that the gallium is found to be in a higher reduced state (almost metallic), supported by carbon. The question that remains open in addition to the one related to the formation of galium carbide is whether a complex structure, including oxygen contamination is involved in the layers surrounding the Ga as indicated by the EXAFS results.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: gallium; gallium carbide; galliumÔÇÉcarbon complex; sonochemistry

Document Type: Research Article

Publication date: July 1, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more