Skip to main content
padlock icon - secure page this page is secure

Understanding the structural origin of crystalline phase transformations in nepheline (NaAlSiO4)‐based glass‐ceramics

Buy Article:

$52.00 + tax (Refund Policy)

Nepheline (Na6K2Al8Si8O32) is a rock‐forming tectosilicate mineral which is by far the most abundant of the feldspathoids. The crystallization in nepheline‐based glass‐ceramics proceeds through several polymorphic transformations — mainly orthorhombic, hexagonal, cubic — depending on their thermochemistry. However, the fundamental science governing these transformations is poorly understood. In this article, an attempt has been made to elucidate the structural drivers controlling these polymorphic transformations in nepheline‐based glass‐ceramics. Accordingly, two different sets of glasses (meta‐aluminous and per‐alkaline) have been designed in the system Na2O–CaO–Al2O3–SiO2 in the crystallization field of nepheline and synthesized by the melt‐quench technique. The detailed structural analysis of glasses has been performed by 29Si, 27Al, and 23Na magic‐angle spinning — nuclear magnetic resonance (MAS NMR), and multiple‐quantum MAS NMR spectroscopy, while the crystalline phase transformations in these glasses have been studied under isothermal and non‐isothermal conditions using differential scanning calorimetry (DSC), X‐ray diffraction (XRD), and MQMAS NMR. Results indicate that the sequence of polymorphic phase transformations in these glass‐ceramics is dictated by the compositional chemistry of the parent glasses and the local environments of different species in the glass structure; for example, the sodium environment in glasses became highly ordered with decreasing Na2O/CaO ratio, thus favoring the formation of hexagonal nepheline, while the cubic polymorph was the stable phase in SiO2–poor glass‐ceramics with (Na2O+CaO)/Al2O3 > 1. The structural origins of these crystalline phase transformations have been discussed in the paper.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: aluminosilicates; crystals/crystallization; glass; glass‐ceramics; nuclear magnetic resonance

Document Type: Research Article

Publication date: July 1, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more