Skip to main content
padlock icon - secure page this page is secure

Hydrothermal formation and up‐conversion luminescence of Er3+‐doped GdNbO4

Buy Article:

$52.00 + tax (Refund Policy)

The effect of concentration of Er3+ on the up‐conversion and photoluminescence properties of Gd1.00−x Er x NbO4, x=0‐0.50 which has monoclinic fergusonite‐type structure as a main phase has been investigated, using a processing technique based on hydrothermal method. Under weakly basic hydrothermal condition at 240°C for 5 hours, a single phase of fergusonite‐type Gd1.00−x Er x NbO4 solid solution was directly formed as nanocrystals by the substitutional incorporation of Er3+ into GdNbO4 because of the gradual and linear decrease in the lattice parameters of the monoclinic phase corresponding to the Vegard's Law. The gadolinium niobate doped with 2 mol% Er3+, Gd0.98Er0.02NbO4 after heating at 1300°C for 1 hour, which has nanocrystalline structure whose crystallite size is around 29 nm, exhibits the highest photoluminescence intensity in the green spectral region, 515‐560 nm under excitation at wavelength of 254 nm. On the other hand, the up‐converted luminescence intensity of the niobate nanocrystals becomes the maximum at the concentration of 20 mol% Er3+, Gd0.80Er0.20NbO4 under excitation at 980 nm. These results demonstrate that the material, Er3+‐doped GdNbO4 nanocrystals prepared through hydrothermal route and postheating has potential for up‐converting phosphor.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: GdNbO4; gadolinium niobate; hydrothermal synthesis; up‐conversion luminescence

Document Type: Research Article

Publication date: July 1, 2017

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more