Skip to main content
padlock icon - secure page this page is secure

Temperature‐Dependent Deformation and Dislocation Density in SrTiO3 (001) Single Crystals

Buy Article:

$52.00 + tax (Refund Policy)

This study evaluates the change of flow stress as related to dislocation density in SrTiO3 single crystals in order to provide guidance for later electrical studies. The key parameters varied are temperature and loading rate during the deformation. It is found that in <100>‐oriented SrTiO3 single crystals, the dislocation density is enhanced by plastic deformation, more so at higher temperature as compared to room temperature. The experimental approach of quantifying the dislocation density through a determination of ex situ X‐ray diffraction rocking curves was successfully applied over the upper temperatures region of the lower temperature ductility zone for strontium titanate, i.e., in the so‐called “A‐regime”. For 1.0% deformed samples deformed at 300°C, a fourfold increase in dislocation density to 1.4 × 1013 m−1 was found as compared to the nondeformed state (3.7 × 1012 m−1). Cross‐section techniques confirmed that the observed dislocation densities measured at the surfaces were identical to those seen in the core of the crystals. The use of rapid changes in loading rate provided an estimate for activation volume of the dislocation core for both 25°C and 300°C.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: dislocations; perovskites; plasticity; single crystal; strontium titanate

Document Type: Research Article

Publication date: October 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more