Skip to main content
padlock icon - secure page this page is secure

On the Effect of Lithium on the Energetics and Thermal Stability of Nano‐Sized Nonstoichiometric Magnesium Aluminate Spinel

Buy Article:

$47.00 + tax (Refund Policy)

The thermal stability of Li‐doped nonstoichiometric nano‐sized magnesium aluminate spinel, synthesized using a combustion synthesis method, was studied using XRD, FTIR, and high‐temperature differential scanning calorimetry. Li content within the magnesium aluminate spinel was determined to be a function of crystallite size and stoichiometry. For smaller crystallite sizes and higher Mg deficits, a greater amount of lithium could be incorporated into the structure as a solid solution between LiAl5O8 and MgO·nAl2O3 spinel, where n is the ratio between Al2O3 and MgO. By assessing the intensities of the IR γ1, γ2, and γ5 modes, the degree of structural disorder (i.e., the inversion parameter and lithium occupancy) was defined. The results indicated that the as‐synthesized materials were heavily disordered. The surface enthalpy of the MgO·1.06Al2O3, 1.51 ± 0.15 J/m2, is in good agreement with the reported value for the same composition, 1.8 ± 0.3 J/m2, measured using high‐temperature drop solution calorimetry. The surface enthalpies of MgO·1.21Al2O3 and 0.20 at.% Li–MgO·1.21Al2O3 were 1.17 ± 0.15 and 1.05 ± 0.12 J/m, respectively.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: LiAl5O8; lithium; magnesium aluminate spinel; nano‐stability; surface and interface enthalpies

Document Type: Research Article

Publication date: August 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more