Skip to main content
padlock icon - secure page this page is secure

Ion‐Exchanged Lithium Aluminosilicate Glass: Strength and Dynamic Fatigue

Buy Article:

$52.00 + tax (Refund Policy)

Sodium for lithium and potassium for lithium ion‐exchanges of a lithium aluminosilicate glass were conducted and the resulting strength and dynamic fatigue characteristics were studied. Four‐point bend mechanical tests revealed that greater strengthening can be achieved by the potassium for lithium ion‐exchange, compared to the sodium for lithium ion‐exchange, and that the dynamic fatigue tendency is strongly suppressed by both exchanges. This suppression of dynamic fatigue characteristics of ion‐exchange strengthened glass was explained by the ability of the surface compressive layer to delay the onset of slow crack growth. Bulk stresses continue to increase in magnitude while the crack is arrested in the surface compressive stress region. Upon offsetting the surface compressive stress, the crack rapidly propagates into a high‐magnitude tensile stress field until the fracture toughness is reached, resulting in minimal crack growth prior to material failure. A slow crack growth model utilizing a fracture mechanics weight function was developed to simulate the experiments. Dynamic fatigue characteristics of the as‐received glass, without ion‐exchange treatment, were also measured and simulated for comparison.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: aluminosilicates; crack growth; fatigue; ion‐exchange

Document Type: Research Article

Publication date: August 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more