Skip to main content
padlock icon - secure page this page is secure

Low‐Temperature Sintering of HfC/SiC Nanocomposites Using HfSi2‐C Additives

Buy Article:

$52.00 + tax (Refund Policy)

HfC/SiC nanocomposites were fabricated via the reactive spark plasma sintering (R‐SPS) of a nano‐HfC powder and HfSi2‐C sintering additives. The densification temperature decreased to 1750°C as the additive content increased. XRD analysis indicated the formation of pure HfC–(19.3–33.8 vol%) SiC within the sintered composites without residual silicide or oxide phases or secondary nonoxide phases. Ultrafine and homogeneously distributed HfC (470 nm) and SiC (300 nm) grains were obtained in the dense composites using nano‐HfC powder through the high‐energy ball‐milling of the raw powders and R‐SPS. Grain growth was further suppressed by the low‐temperature sintering using R‐SPS. No amorphous phase was identified at the grain boundary. The maximum Vickers hardness, Young's modulus, and fracture toughness values of the HfC/SiC nanocomposites were 22 GPa, 292 GPa, and 2.44 MPa·m1/2, respectively.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: hafnium carbide; mechanical properties; microstructure; nanocomposites; reactive spark plasma sintering

Document Type: Research Article

Publication date: August 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more