Skip to main content
padlock icon - secure page this page is secure

Photonic Sintering of Aerosol Jet Printed Lead Zirconate Titanate (PZT) Thick Films

Buy Article:

$47.00 + tax (Refund Policy)

Lead Zirconate Titanate (PZT) is a commonly used piezoelectric material due to its high piezoelectric response. We demonstrate a new method of printing and sintering micro‐scale PZT films with low substrate temperature increase. Self‐prepared PZT ink was Aerosol‐Jet printed on stainless steel substrates. After drying for 2 h in vacuum at 200°C, the printed PZT films were divided into two groups. The first group was traditionally sintered, using a thermal process at 1000°C for 1 h in an Argon environment. The second group was photonically sintered using repetitive sub‐msec pulses of high intensity broad spectrum light in an atmospheric environment. The highest measured substrate temperature during photonic sintering was 170.7°C, enabling processing on low melting point substrates. Ferroelectric measurements were performed with a low‐frequency sinusoidal signal. The remanent polarization (P r) and coercive field (E c) for thermally sintered PZT film were 17.1 μC/cm2 and 6.3 kV/cm, respectively. The photonically sintered film had 32.4 μC/cm2 P r and 6.7 kV/cm E c. After poling the samples with 20 kV/cm electric field for 2 h at 150°C, the piezoelectric voltage constant (g 33) was measured for the two film groups yielding −16.9 × 10−3 (V·m)·N−1 (thermally sintered) and −17.9 × 10−3 (V·m)·N−1 (photonically sintered). Both factors indicate the PZT films were successfully sintered using both methods, with the photonically sintered material exhibiting superior electrical properties. To further validate photonic sintering of PZT on low melting point substrates, the process and measurements were repeated using a polyethylene terephthalate (PET) substrate. The measured P r and E c were 23.1 μC/cm2 and 5.1 kV/cm, respectively. The g 33 was −17.3 × 10−3 (V·m)·N−1. Photonic sintering of thick film PZT directly on low melting point substrates eliminates the need for complex layer transfer processes often associated with flexible PZT transducers.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: lead zirconate titanate; low temperature; printing; sinter/sintering

Document Type: Research Article

Publication date: August 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more