Skip to main content
padlock icon - secure page this page is secure

Electronic Structure and Mechanical Properties of NiB: A Promising Interphase Material for Future UHTCf/UHTC Composites

Buy Article:

$47.00 + tax (Refund Policy)

Weak interphases play a pivotal role by acting as mechanical fuse to deflect matrix cracks in future ultrahigh‐temperature ceramic fiber reinforced ceramic matrix (UHTCf/UHTC) composites. However, the interphase materials are not available yet. In this work, the electronic structure, chemical bonding, and mechanical properties of NiB, which is a promising interphase material for UHTCf/UHTC composites, were investigated. NiB has relatively low shear modulus of 116 GPa, moderate Young's modulus of 307 GPa, but high bulk modulus of 287 GPa. The Pugh's ratio G/B is only 0.404 and the micro hardness is predicted to be 8.2 GPa, indicating that NiB belongs to “soft” and “ductile” UHTCs. The possible slip systems are [100](001), [010](001), and [001](010) due to the presence of metallic Ni–Ni and weak Ni–B bonding. Details on the electronic structure and directional dependence of shear and Young's moduli are disclosed to highlight the mechanisms that underpin the properties.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: June 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more