Skip to main content
padlock icon - secure page this page is secure

Microstructural Control of Colloidal‐Based Ceramics by Directional Solidification Under Weak Magnetic Fields

Buy Article:

$52.00 + tax (Refund Policy)

The use of weak magnetic fields to control the microstructural evolution of colloidal‐based systems in conjunction with directional solidification is demonstrated as a convenient processing route to fabricate anisotropic ceramic scaffolds with complex microarchitectures. A variety of graded and aligned microstructures were formed by applying external static magnetic fields oriented radially, axially, and transversely with respect to the solidification direction of freezing slurries containing micro/nanoparticles of ZrO2 and Fe3O4. The graded structures, formed by the radial and axial fields, resemble core–shell architectures composed of dense outer perimeters surrounding porous inner cores. The aligned structures, formed by transverse fields, exhibit two modes of microstructural alignment: lamellar walls aligned by the growing ice crystals and mineral bridges aligned by the magnetic fields. The alignment of mineral bridges that connect adjacent lamellae, provide these scaffolds enhanced strength and stiffness when compressed parallel to their orientation (parallel to the direction of the magnetic field).
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: June 1, 2016

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more