Skip to main content
padlock icon - secure page this page is secure

Thermal Conductivity of Molten B2O3, B2O3–SiO2, Na2O–B2O3, and Na2O–SiO2 Systems

Buy Article:

$47.00 + tax (Refund Policy)

With the aid of the transient hot‐wire method, the thermal conductivity of molten B2O3, B2O3–SiO2, Na2O–SiO2, and Na2O–B2O3 systems was measured along with their temperature and composition. It was observed that the thermal conductivity of pure B2O3 increased with temperature, until about 1400 K, and then decreased subsequently. Using the MAS‐NMR, 3Q‐MAS, and Raman spectroscopy, the structure of B2O3 and SiO2 in the B2O3–SiO2 system was confirmed. Findings show that an addition of B2O3 into the pure SiO2 system causes a significant decrease in thermal conductivity, due to the formation of boroxol rings. The thermal conductivity of the Na2O–SiO2 system was measured and its phonon mean free path was calculated. In addition, a positive linear relation between viscosity and thermal conductivity was observed. In the Na2O–B2O3 system, it was found that a change in the relative fraction of 4‐coordinated boron has an influence on the thermal conductivity when the concentration of Na2O is between 10 and 30 mol%, in which case the tetraborate unit is dominant.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more