Skip to main content
padlock icon - secure page this page is secure

Hot‐Pressing Kinetics and Densification Mechanisms of Boron Carbide

Buy Article:

$47.00 + tax (Refund Policy)

The hot‐pressing kinetics of boron carbide at different stages in the hot‐pressing process was investigated. Based general densification equation and pore‐dragged creep model, the densification and grain growth kinetics were analyzed as a function of various parameters such as sintering temperature, sintering pressure and dwell time. Stress exponent of n ≈ 3 at the initial dwell stage suggests the plastic deformation may dominates the densification. The further TEM observations and the calculation based on effective stress and plastic yield stress also indicate that plastic deformation may occur and account for the large increase in density at the initial stage of sintering. Calculated grain size exponent of m ≈ 3 suggests that the grain‐boundary diffusion dominates the densification at the final stage. During the final stage of sintering, grain growth may be determined by evaporation/condensation and grain‐boundary migration.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: May 1, 2015

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more