Skip to main content
padlock icon - secure page this page is secure

Luminescent Properties of Praseodymium in CaWO4 Matrix

Buy Article:

$52.00 + tax (Refund Policy)

Praseodymium (Pr3+) with rich f energy levels can generate various visible emissions, but the luminescence of Pr3+ in a CaWO4 matrix has not yet been studied. In this article, the phosphors of Pr3+‐doped CaWO4 were synthesized via a high temperature solid‐state reaction, and the photoluminescence (PL) and afterglow properties of Pr3+ in the CaWO4 matrix were investigated. The phase identifications of the samples show that an impure monoclinic phase appears when the Pr3+ concentration is high. The results of PL exhibit the usual Pr3+ characteristic emissions as well as an emission that is produced by the charge transfer from 5d of W6+ to 2p of O2− under a shortwave ultraviolet excitation. An intermediate energy transfer occurs during the charge transfer which induces the afterglow. The quenching point of Pr3+ in CaWO4 is 2 mol%, corresponding to the critical energy transfer distance of ~20 Å. The quenching mechanism in the Pr3+‐doped CaWO4 is the dipole‐dipole interaction. The Ca2+ vacancies (V Ca) are the defects that induce the traps and capture holes from O2−. The thermal energy of holes liberation from V Ca to O2− results in the charge transfer accompanied by an energy transfer to Pr3+, and consequently generates the afterglow. The experimental results also show that the afterglow characteristics of Pr3+ are prolonged by incorporating Pr3+ in the CaWO4 matrix.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: October 1, 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more