Skip to main content
padlock icon - secure page this page is secure

Solution Combustion Synthesis and Characterization of Magnetite, Fe3O4, Nanopowders

Buy Article:

$52.00 + tax (Refund Policy)

Combustion synthesis of Fe3O4 and properties of the resulted powders have been discussed in relation to reaction atmosphere (in air/in the absence of air) and used fuel (sucrose, citric acid and glucose). Conducting the combustion reactions in air caused the rapid oxidation of Fe2+ to Fe3+ under the influence of the atmospheric oxygen; therefore the final reaction product was a mixture of α‐Fe2O3 and γ‐Fe2O3. In order to avoid the oxidation of Fe2+ to Fe3+ a simple but efficient solution has been suggested: combustion reactions were carried out in a round bottom flask and the evolving gases were bubbled in a beaker filled with water. This solution allowed the preparation of Fe3O4 nanopowders, with crystallite size varying from 10 nm (glucose) to 18 nm (citric acid). Depending on the used fuel, the specific surface area of the magnetite powders varied between 56 m2/g (citric acid) and 106 m2/g (glucose). The saturation magnetization of Fe3O4 powders prepared in the absence of air ranged between 55.3 emu/g (glucose) and 59.4 emu/g (sucrose).
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: July 1, 2012

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more