Skip to main content
padlock icon - secure page this page is secure

Effect of Fuel Choice on the Aqueous Combustion Synthesis of Lanthanum Ferrite and Lanthanum Manganite

Buy Article:

$43.00 + tax (Refund Policy)

High-surface area, nanocrystalline powders of two closely related peroviskite oxides, LaFeO3 and LaMnO3, were produced by aqueous combustion synthesis using two different fuels. LaMnO3 powders synthesized using glycine fuel had a higher surface area and a smaller crystallite size than when synthesized using ethylene glycol fuel. However, the opposite was observed for LaFeO3 powders, where a higher surface area and a smaller crystallite size was obtained using ethylene glycol. The effect of the fuel type on the powder properties was attributed to the combustion characteristics, such as the rate of temperature increase and maximum measured temperature, and the mode of combustion synthesis. The lower surface area LaFeO3 and LaMnO3 powders had higher rates of temperature increase, which is characteristic of a volume combustion synthesis mode. The high-surface area LaFeO3 powder produced using ethylene glycol fuel, in contrast, had a lower rate of temperature increase, representative of a self-propagating high-temperature synthesis mode. Differential thermal analysis showed that the mode of combustion correlated to the delayed reaction of the iron nitrate oxidizer with the ethylene glycol fuel. For the combustion synthesis of multication complex oxides, each fuel–oxidizer reaction is important for predicting the combustion characteristics and the resulting powder properties.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: GE Global Research, Niskayuna, New York 12309

Publication date: 01 September 2010

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more