Skip to main content
padlock icon - secure page this page is secure

Synthesis of Er3+ Doped Y2O3 Nanophosphors

Buy Article:

$52.00 + tax (Refund Policy)

The synthesis and characterization of yttrium hydroxyl carbonate (Y(OH)CO32−) and yttrium nitrate hydroxide hydrate (Y(OH)NO3H2O) precursor materials as well as Y2O3 nanoparticles are reported. The resultant precursor particle size is about 10–12 nm with a narrow size distribution by the enzymatic decomposition method, whereas the particle size was smaller than those acquired by the homogeneous and alkali precipitation methods. The formation of Y(OH)CO32− and Y(OH)NO3H2O species was also evident from the fourier-transform infrared spectrometry (FT-IR) analysis. Precipitated Y(OH)CO32− precursors have an amorphous nature whereas Y(OH)NO3H2O precursors have a crystalline nature, which was manifested from the XRD analysis. Moreover, precipitated Y(OH)NO3H2O precursors were found in the agglomerated form and Y(OH)CO32− was established in the monodispersed form, as determined from the FE-SEM, TEM and DLS measurements. It was demonstrated that calcination of precursor materials at 900°C eventually removed the inorganic anions from the precursors and consequently produced crystalline Y2O3 nanoparticles, which was evident from the XRD and FT-IR analysis. The EDS analysis confirms Er3+ doping in the Y2O3 nanoparticles. The morphology and the size of the Y2O3 nanoparticles are almost unchanged before and after the calcination.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Polyscale Technology Research Center, Tokyo University of Science, Chiba 278-8510, Japan 2: Department of Materials Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan

Publication date: May 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more