Skip to main content
padlock icon - secure page this page is secure

Low Friction in CuO-Doped Yttria-Stabilized Tetragonal Zirconia Ceramics: A Complementary Macro- and Nanotribology Study

Buy Article:

$52.00 + tax (Refund Policy)

The tribological behavior of CuO-doped yttria-stabilized tetragonal zirconia (3Y-TZP) ceramics in the absence of additional lubricants was characterized by macroscale pin-on-disk measurements and nanoscale atomic force microscopy (AFM) for a broad range of velocities. The previously observed low shear strength interfacial layers generated in pin-on-disk tracks by Al2O3 ball counter surfaces on CuO-doped 3Y-TZP, as well as virgin surfaces, were probed quantitatively by AFM with Si3N4 tips as the counter surface. The observed trends in nanoscale coefficient of friction determined by AFM were found to be in agreement with data acquired using a pin-on-disk tribometer. The combined data support the notion that a layer of surface contaminations is removed during the initial sliding, and wear of high asperities occurs. Subsequently, an interfacial layer with low shear strength is generated during sliding. While these results do not provide an exhaustive explanation for the process of layer formation, they represent the first report of bridged nano- and macrotribological analysis of a compositionally heterogeneous low-friction, low-wear ceramic material and further confirm some of the key assumptions for the deterministic model reported previously by Pasaribu and Schipper.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology and Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands 2: Laboratory for Surface Technology and Tribology, IMPACT Institute of Mechanics, Faculty of Engineering Technology, Processes and Control, University of Twente, 7500 AE Enschede, The Netherlands

Publication date: May 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more