Skip to main content
padlock icon - secure page this page is secure

Pressureless Sintering of Zirconium Diboride: Particle Size and Additive Effects

Buy Article:

$52.00 + tax (Refund Policy)

Zirconium diboride (ZrB2) was densified by pressureless sintering using <4-wt% boron carbide and/or carbon as sintering aids. As-received ZrB2 with an average particle size of ∼2 m could be sintered to ∼100% density at 1900°C using a combination of boron carbide and carbon to react with and remove the surface oxide impurities. Even though particle size reduction increased the oxygen content of the powders from ∼0.9 wt% for the as-received powder to ∼2.0 wt%, the reduction in particle size enhanced the sinterability of the powder. Attrition-milled ZrB2 with an average particle size of <0.5 m was sintered to nearly full density at 1850°C using either boron carbide or a combination of boride carbide and carbon. Regardless of the starting particle size, densification of ZrB2 was not possible without the removal of oxygen-based impurities on the particle surfaces by a chemical reaction.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Materials Science and Engineering, University of Missouri-Rolla, Rolla, Missouri 65409

Publication date: May 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more