Skip to main content
padlock icon - secure page this page is secure

Two-Step Sintering of Nanocrystalline ZnO Compacts: Effect of Temperature on Densification and Grain Growth

Buy Article:

$52.00 + tax (Refund Policy)

Two-step sintering (TSS) was applied on nanocrystalline zinc oxide (ZnO) to control the accelerated grain growth occurring during the final stage of sintering. The grain size of a high-density (>98%) ZnO compact produced by the TSS was smaller than 1 m, while the grain size of those formed by the conventional sintering method was ∼4 m. The results showed that the temperature of both sintering steps plays a significant role in densification and grain growth of the nanocrystalline ZnO compacts. Several TSS regimes were analyzed. Based on the results obtained, the optimum regime consisted of heating at 800°C (step 1) and 750°C (step 2), resulting in the formation of a structure containing submicrometer grains (0.68 m). Heating at 850°C (step 1) and then at 750°C (step 2) resulted in densification and grain growth similar to the conventional sintering process. Lower temperatures, e.g., 800°C (step 1) and 700°C (step 2), resulted in exhaustion of the densification at a relative density of 86%, above which the grains continued to grow. Thermogravimetric analysis results were used to propose a mechanism for sintering of the samples with transmission electron micrographs showing the junctions that pin the boundaries of growing grains and the triple-point drags that result in the grain-boundary curvature.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Materials and Energy Research Center, P.O. Box 14155-4777, Tehran, Iran

Publication date: January 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more