Skip to main content
padlock icon - secure page this page is secure

Pressureless Sintering of ZrB2–SiC Ceramics

Buy Article:

$52.00 + tax (Refund Policy)

A pressureless sintering process was developed for the densification of zirconium diboride ceramics containing 10–30 vol% silicon carbide particles. Initially, boron carbide was evaluated as a sintering aid. However, the formation of a borosilicate glass led to significant coarsening, which inhibited densification. Based on thermodynamic calculations, a combination of carbon and boron carbide was added, which enabled densification (relative density >98%) by solid-state sintering at temperatures as low as 1950°C. Varying the size of the starting silicon carbide particles allowed the final silicon carbide particle morphology to be controlled from equiaxed to whisker-like. The mechanical properties of sintered ceramics were comparable with hot-pressed materials with Vickers hardness of 22 GPa, elastic modulus of 460 GPa, and fracture toughness of ∼4 MPa·m1/2. Flexure strength was ∼460 MPa, which is at the low end of the range reported for similar materials, due to the relatively large size (∼13 m long) of the silicon carbide inclusions.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: Department of Materials Science and Engineering, University of Missouri-Rolla, Missouri 65409

Publication date: January 1, 2008

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more