Skip to main content
padlock icon - secure page this page is secure

Friction and Wear Properties of Si3N4/Carbon Fiber Composites with Aligned Microstructure

Buy Article:

$52.00 + tax (Refund Policy)

The friction and wear properties of silicon nitride/carbon fiber composites have been assessed and compared with monolithic Si3N4. Three different types of composites have been produced; one in which both the Si3N4 grains and the carbon fibers were aligned, one in which only the fibers had alignment, and a third where both the grains and fibers had random orientation. The friction coefficients of all of the composites, following running in, were around 0.2–0.3, typically less than one-third of that of the monolithic material. However there was no significant difference in friction coefficient between the three different types of composite. The specific wear rates of all the materials decreased with sliding distance and those of the composites were lower than the monolithic material. Among the composites, the wear rate of the one with aligned fibers in a randomly oriented Si3N4 matrix showed no dependence on sliding direction relative to the fiber alignment, and the specific wear rates of these samples were similar to that of the randomly oriented fiber composite, indicating little effect of fiber alignment alone on the wear properties under the present testing conditions. However, the specific wear rate of the composite with both fiber and grain alignment showed directional dependence. Grain cracking was observed perpendicular to the sliding direction, and the Spara specimen, in which the sliding direction was parallel to the Si3N4 grain alignment, showed higher wear rates than the Sperp and N samples of this composite. Such cracks are perpendicular to the major axis of the grains in the Spara sample and are thought to lead to easier removal of grains following their cracking under the tensile stresses induced particularly during the running in period.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Isuzu Advanced Engineering Center Ltd., Fujisawa, Kanagawa 252-8501, Japan 2: Research Institute of Instrumentation Frontier, AIST, Nagoya, Aichi 463-8687, Japan

Publication date: May 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more