Skip to main content
padlock icon - secure page this page is secure

The Mechanics of Indentation Induced Lateral Cracking

Buy Article:

$52.00 + tax (Refund Policy)

The mechanics governing the lateral cracks that form when a hard object plastically penetrates a ceramic is presented. The roles of indentation load, penetration depth, and work of indentation are all highlighted, as are the influences of the mechanical properties of the material. A closed form solution for cracking induced by expansion of a two-dimensional cavity is used to bring out essential features related to parametric dependence and scaling. The three-dimensional axisymmetric problem for an annular crack driven by a rigid spherical or conical indenter is solved using numerical methods. The region of highest tensile stress is identified corresponding to the location where a crack is most likely to nucleate. This location coincides with the depth below the surface where the crack will expand parallel to the surface under mode I conditions. The solutions have been substantiated by comparison with measurements of the cracks that form upon Vickers indentation. The basic formula for the crack radius has been used to predict trends in cracking upon static penetration and impact by a projectile. In both cases, the extent of the cracking is substantially diminished by increasing the toughness of the material. The yield strength has a much smaller effect. The cracks caused by penetration and the volume removed per impact both decrease marginally at higher yield strength.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, New York 10027 2: Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 3: Materials Department, University of California, Santa Barbara, California 93106

Publication date: May 1, 2005

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more