Skip to main content
padlock icon - secure page this page is secure

J. Cosmet. Sci., 59, 1–14 (January/February 2008)

Determination of optimal dead sea salt content in a cosmetic emulsion using rheology and stability measurements

Buy Article:

$52.00 + tax (Refund Policy)


Dead Sea mud and salts are known for their therapeutic and cosmetic properties. The presence of Dead Sea (DS) salts in different types of cosmetics has affected the stability and the flow properties of the finished products. In this study, an attempt was made to find the optimum Dead Sea salt content in a cosmetic emulsion (model of body cream) using both rheology and stability measurements. The rheological properties were tested during a four-month storage period at three different storage temperatures: 8°C, room temperature, and 45°C. In addition to rheological measurements and centrifuge tests, the conductivities of the emulsion samples were also determined. The centrifuge tests showed that the cream samples containing more than 0.25 wt% of DS salt showed phase separation. The addition of DS salt to the cosmetic emulsion led to two maxima in the emulsion viscosity at salt contents of 0.07 wt% and 0.15 wt%. However, the emulsion samples containing 0.15% of DS salt was considered the optimum sample since it contained the maximum amount of salt and exhibited the maximum viscosity at all tested conditions. It was found that the viscosity of the emulsion is increased with storage time and storage temperature. This behavior was accompanied by a decrease in conductivity. This behavior was explained by water evaporation from the emulsion. However, it has been shown that the presence of DS salt in the cosmetic emulsion significantly reduces the rate of water evaporation. The conductivity measurements reflect the rate of water evaporation, and the presence of DS salt reduces the rate of conductivity. Conductivity is observed to decrease with storage time and temperature.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Abstract

Publication date: February 1, 2009

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more