Skip to main content
padlock icon - secure page this page is secure

Estimation of Generic Subslab Attenuation Factors for Vapor Intrusion Investigations

Buy Article:

$52.00 + tax (Refund Policy)

Generic indoor air:subslab soil gas attenuation factors (SSAFs) are important for rapid screening of potential vapor intrusion risks in buildings that overlie soil and groundwater contaminated with volatile chemicals. Insufficiently conservative SSAFs can allow high‐risk sites to be prematurely excluded from further investigation. Excessively conservative SSAFs can lead to costly, time‐consuming, and often inconclusive actions at an inordinate number of low‐risk sites. This paper reviews two of the most commonly used approaches to develop SSAFs: (1) comparison of paired, indoor air and subslab soil gas data in empirical databases and (2) comparison of estimated subslab vapor entry rates and indoor air exchange rates (IAERs). Potential error associated with databases includes interference from indoor and outdoor sources, reliance on data from basements, and seasonal variability. Heterogeneity in subsurface vapor plumes combined with uncertainty regarding vapor entry points calls into question the representativeness of limited subslab data and diminishes the technical defensibility of SSAFs extracted from databases. The use of reasonably conservative vapor entry rates and IAERs offers a more technically defensible approach for the development of generic SSAF values for screening. Consideration of seasonal variability in building leakage rates, air exchange rates, and interpolated vapor entry rates allows for the development of generic SSAFs at both local and regional scales. Limitations include applicability of the default IAERs and vapor entry rates to site‐specific vapor intrusion investigations and uncertainty regarding applicability of generic SSAFs to assess potential short‐term (e.g., intraday) variability of impacts to indoor air.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: November 1, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more