Skip to main content
padlock icon - secure page this page is secure

Factors Controlling In Situ Biogeochemical Transformation of Trichloroethene: Field Survey

Buy Article:

$52.00 + tax (Refund Policy)

We have previously defined in situ biogeochemical transformation as the biogenic formation of reactive minerals that are capable of abiotically degrading chlorinated solvents such as trichloroethene without accumulation of degradation products such as vinyl chloride (AFCEE et al. ). This process has been implemented in biowalls used to intercept contaminated groundwater. Abiotic patterns of contaminant degradation were observed at Altus Air Force Base (AFB) and in an associated column study, but not at other sites including Dover AFB. These abiotic patterns were associated with biogenic formation of reactive iron sulfide minerals. Iron sulfides in the form of small individual grains, coatings on magnetite, and sulfur‐deficient pyrite framboids were observed in samples collected from the Altus AFB biowalls and one of the EPA columns. Larger iron sulfide grains coated with oxide layers were observed in samples collected from Dover AFB. Altus AFB and the EPA column differed from Dover AFB in that groundwater flow at Dover AFB was relatively slow and potentially reversing. High volumetric sulfate consumption rates, an abiotic pattern of trichloroethene (TCE) degradation, and the formation of small, high surface area iron sulfide particles were associated with relatively high rates of TCE removal via an abiotic pattern. Geochemical modeling demonstrated that iron monosulfides such as mackinawite were near saturation, and iron disulfides such as pyrite were supersaturated at all sites. This environmental condition can be supportive of nucleation of small particles rather than crystal growth leading to larger particles. When nucleation is dominant, small, high surface area, and reactive particles result. When crystal growth dominates the crystals are larger and have lower specific surface area and reactivity. These results taken together suggest that creation of a dynamic environment can promote biogeochemical transformation based on generation of reactive iron sulfides.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: August 1, 2014

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more