Skip to main content
padlock icon - secure page this page is secure

A Simplified Dimensionless Model of the Passive Diffusion of Gases and Solutes in Groundwater Through Polymer Tubing

Buy Article:

$47.00 + tax (Refund Policy)

The dissolution of gases, such as oxygen, in groundwater is a means to provide electron acceptors required for the biological degradation of organic contaminants in aquifers. The use of polymeric emitters for passive gas diffusion in groundwater significantly increases the efficiency of oxygen transfer to the groundwater compared to conventional sparging. A critical parameter for the design of polymeric emitters is the diffusion coefficient (D) of the polymer tubing used to construct the emitters. Wilson and Mackay (1995) proposed a mathematical model (WM model) for the analysis of laboratory passive diffusion experiments aimed at characterizing D. Their analytical solution is obtained in Laplace space and its inversion requires the use of a numerical approximation technique. This article proposes an alternative to the WM model by simplifying it as a dimensionless ordinary differential equation (ODE) which is solved using simple integration. The validity of the dimensionless solution is discussed and the latter plotted into charts to provide easy‐to‐use analytical tools applicable to gas or solute diffusion in groundwater.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Publication date: 01 November 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
X
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more