Skip to main content
padlock icon - secure page this page is secure

The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean

Buy Article:

$69.00 + tax (Refund Policy)


Soybean (Glycine max) was grown at ambient and enhanced carbon dioxide (CO2, + 250 L L−1 above ambient) with and without the presence of a C3 weed (lambsquarters, Chenopodium album L.) and a C4 weed (redroot pigweed, Amaranthus retroflexus L.), in order to evaluate the impact of rising atmospheric carbon dioxide concentration [CO2] on crop production losses due to weeds. Weeds of a given species were sown at a density of two per metre of row. A significant reduction in soybean seed yield was observed with either weed species relative to the weed-free control at either [CO2]. However, for lambsquarters the reduction in soybean seed yield relative to the weed-free condition increased from 28 to 39% as CO2 increased, with a 65% increase in the average dry weight of lambsquarters at enhanced [CO2]. Conversely, for pigweed, soybean seed yield losses diminished with increasing [CO2] from 45 to 30%, with no change in the average dry weight of pigweed. In a weed-free environment, elevated [CO2] resulted in a significant increase in vegetative dry weight and seed yield at maturity for soybean (33 and 24%, respectively) compared to the ambient CO2 condition. Interestingly, the presence of either weed negated the ability of soybean to respond either vegetatively or reproductively to enhanced [CO2]. Results from this experiment suggest: (i) that rising [CO2] could alter current yield losses associated with competition from weeds; and (ii) that weed control will be crucial in realizing any potential increase in economic yield of agronomic crops such as soybean as atmospheric [CO2] increases.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Keywords: carbon dioxide; climate change; competition; lambsquarters; pigweed; yield

Document Type: Commentary

Affiliations: Climate Stress Laboratory, Bldg 046 A, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA

Publication date: December 1, 2000

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more