Skip to main content
padlock icon - secure page this page is secure

Free Content Non-quantal release of acetylcholine in guinea-pig airways: role of choline transporter

Download Article:

You have access to the full text article on a website external to Ingenta Connect.

Please click here to view this article on Wiley Online Library.

You may be required to register and activate access on Wiley Online Library before you can obtain the full text. If you have any queries please visit Wiley Online Library

In the resting state, motor neurons continuously release ACh through quantal and non-quantal mechanisms, the latter through vesicular ACh transporter (VAChT) and choline transporter (ChT). Although in skeletal muscle these mechanisms have been extensively studied, the non-quantal release (NQR) from parasympathetic neurons of airway smooth muscle has not been described. Here we corroborated that the organophosphate paraoxon (acetylcholinesterase inhibitor) induced a contraction blocked by atropine (muscarinic antagonist) in guinea-pig tracheal rings. This contraction was not modified by two blockers of evoked quantal release, tetrodotoxin (voltage-dependent Na+ channel blocker) and -conotoxin GVIA (N-type Ca2+ channel blocker), nor by the nicotinic blocker hexamethonium, suggesting that acetylcholine NQR could be responsible of the paraoxon-induced contraction. We confirmed that tetrodotoxin, and to some extent -conotoxin, abolished the evoked quantal ACh release induced by electrical field stimulation. Hemicholinium-3 (ChT inhibitor), but not vesamicol (VAChT inhibitor), caused a concentration-dependent inhibition of the response to paraoxon. The highest concentration of hemicholinium-3 left ∼75% of the response to electrical field stimulation, implying that inhibition of paraoxon-induced contraction was not due to depletion of neuronal vesicles. Non-neuronal sources of ACh released through organic cation transporters were discarded because their inhibition by quinine or corticosterone did not modify the response to paraoxon. Calcium-free medium abolished the effect of paraoxon, and NiCl2, 2-aminoethyl diphenyl-borate and SKF 96365 partly inhibited it, suggesting that non-specific cation channels were involved in the acetylcholine NQR. We concluded that a Ca2+-dependent NQR of ACh is present in cholinergic nerves from guinea-pig airways, and that ChT is involved in this phenomenon.
No References
No Citations
No Supplementary Data
No Article Media
No Metrics

Document Type: Research Article

Affiliations: 1: Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias, México DF, Mexico 2: Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, Mexico

Publication date: 01 April 2011

  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content
Cookie Policy
Cookie Policy
Ingenta Connect website makes use of cookies so as to keep track of data that you have filled in. I am Happy with this Find out more